Facility Focus: NASA Goddard Space Flight Center – Tech Briefs

Facility Focus: NASA Goddard Space Flight Center

Dr. Robert Hutchings Goddard is considered the father of modern rocket propulsion. A physicist, Goddard also had a unique genius for invention. It is in his honor that NASA’s Goddard Space Flight Center in Greenbelt, MD, was established on May 1, 1959 as NASA’s first space flight complex.

NASA Goddard works to increase scientific understanding and answer humanity’s most pressing questions about our world, the solar system, and beyond. The center identifies requirements and innovations; designs, builds, and launches spacecraft; and manages and supports space missions.

Goddard manages communications between Mission Control and orbiting astronauts aboard the International Space Station, and has sent instruments to every planet in the solar system. As a spaceflight center, Goddard utilizes its core technical and programmatic expertise and facility capabilities to execute a broad range of flight missions and field campaigns.

More than 50 Goddard spacecraft explore Earth and the solar system, collecting observations to be parsed and studied by scientists around the world. Missions support multiple scientific disciplines including Earth science, solar science and the Sun-Earth environment, planetary studies, and astrophysics. The center is the operational home of the Hubble Space Telescope and the James Webb Space Telescope.

Goddard builds instruments for missions, ranging from subsystems — such as detectors and optical elements — to full instruments and complex instrument suites. The center also designs and implements custom, large-scale data systems and supercomputing applications for high-performance computing and archiving of a wide range of science data. Goddard services enable extended mission operations, reconfiguration, and recovery including in-orbit spacecraft refueling and repair and assembling large structures in orbit and modular designs.

NASA’s spaceborne assets are increasingly in demand to help agencies and first responders jump into action after natural disasters. In some cases, these assets are needed not only in the immediate aftermath but also in the subsequent months and years of recovery. After Hurricane Maria’s direct hit on Puerto Rico in 2017, Goddard scientists provided federal agencies on the ground with a new, high-definition view showing the lights visible on the island at night. Using ground-based and satellite data, including those from Landsat satellites, the scientists created a map of Puerto Rico’s power outages. The map was continually updated months after the storm, allowing for real-time monitoring of recovery efforts as well as analyses of vulnerabilities, helping guide the design of a more resilient electricity grid.

In some cases, NASA also provides a view of where disaster may strike. For the first time, scientists can look at landslide threats anywhere around the world in near-real time, thanks to data from the Global Precipitation Measurement (GPM) mission and a new model developed by Goddard scientists. The model uses GPM data to identify areas with heavy, persistent, and recent precipitation. Where precipitation is unusually high, the model determines if the area is prone to landslides using a susceptibility map.

NASA data and tools are also being used to better respond to disease and public health. In 2018, measurements from NASA’s Earth-observing research satellites were used to help combat a potential outbreak of life-threatening cholera. Humanitarian teams in Yemen targeted areas identified by a NASA project that precisely forecasts high-risk regions based on environmental conditions observed from space. Humanitarian workers used this information to implement life-saving strategies to reduce the risk of cholera.

The Sample Analysis at Mars (SAM) instrument on the Curiosity rover analyzes samples of material collected by the rover’s arm. (NASA)

Goddard researchers, working with their university counterparts, advance the use of satellites to monitor air quality worldwide. Combining data from the Ozone Monitoring Instrument on the Aura satellite with Goddard’s GEOS-5 atmospheric computer model, scientists are releasing an experimental global air quality forecast that can predict harmful levels of particulates, carbon monoxide, nitrous dioxide, and other pollutants.

Apollo-era astronauts attracted a lot of Moon dust as they worked on the lunar surface. Goddard technologists are experimenting with different techniques to prevent the attraction when NASA returns to the Moon. (NASA)

Since 1961, Goddard’s communications networks have served as the backbone for NASA’s human exploration missions, beginning with the use of ground-based antennas. In 1983, Goddard launched the first Tracking and Data Relay Satellite (TDRS) that provided continuous communications through space-based relays and forever changed the landscape of space communications. Today, Goddard is implementing optical communications in space, which will provide better data rates as NASA returns to the Moon and journeys beyond.

Leave a Reply

Your email address will not be published. Required fields are marked *