Commercial Spaceflight – Commercial Crew Program

Category: Commercial Spaceflight

NASA Update on Orbital Flight Test Independent Review Team

The joint NASA and Boeing Independent Review Team formed following the anomalies during the company’s uncrewed Orbital Flight Test as a part of the agency’s Commercial Crew Program has completed its initial investigation. The team was tasked with reviewing three primary anomalies experienced during the mission: two software coding errors and unanticipated loss of space-to-ground communication capability. During the investigation, the team identified several technical and organizational issues related to Boeing’s work. Separate from the independent team, NASA reviewed its role in the flight test and identified several areas where the agency can improve its level of participation and involvement into company’s processes.

While the review team, NASA and Boeing have made significant progress during the last month, more work will be required to inform the agency’s decision of whether Boeing will need to perform another uncrewed test flight of the Starliner system. NASA will determine if a repeat of the flight will be needed after Boeing has presented its detailed resolution and rework plan and NASA has independently assessed the thoroughness of that plan.

NASA also will perform an evaluation of the workplace culture of Boeing ahead of crewed test flights through an Organizational Safety Assessment (OSA). The goal of the OSA is to provide a comprehensive safety assessment through individual employee interviews with a sampling from a cross-section of personnel, including senior managers, mid-level management and supervision, and engineers and technicians at various sites.

Further, NASA will designate the anomalies experienced during the mission as a high visibility close call. As there were no injuries during the flight, this close call designation is where the potential for a significant mishap could have occurred and should be investigated to understand the risk exposure and the root cause(s) that placed equipment or individuals at risk. Since 2004, the year NASA updated this procedural requirement, NASA has designated about 24 high visibility close calls. For example, in July 2013, astronaut Luca Parmitano discovered a leak in his spacesuit that could have resulted in asphyxiation; as a result, that incident also was given the same designation.

Description of the three primary anomalies:

  • Mission Elapsed Timer (MET): Following spacecraft separation with the Atlas V launch vehicle, Boeing’s CST-100 Starliner is programmed to execute a few maneuvers tied to the mission timer. Because of an error in the coding, the Starliner synced its clock with the rocket before the terminal count had begun, which is when the rocket sets the correct time for a designated T-0. This led to the spacecraft thinking it was at a different point in the mission following separation, and it did not conduct the correct maneuvers.
  • Service Module Disposal Burn: Following the MET anomaly, Boeing and NASA reviewed other phases of flight where software coding could impact mission success. This review resulted in the team discovering and correcting a software issue during Starliner’s crew and service module separation sequence. The correction ensured a successful separation and disposal of the service module.
  • Space-to-Ground Communication (S/G): An Intermittent S/G forward link issue impeded the flight control team’s ability to command and control Starliner during the mission and could impede reliable voice communication with crew during a flight with astronauts.

What the Review Team Found and Recommends

The review team’s analysis identified 61 corrective and preventative actions to address the two software anomalies; those actions are organized into four categories to help manage and execute the scope of the work. Below are the four categories and examples of the resulting actions that Boeing has already begun working on:

  1. Perform code modifications: Boeing will review and correct the coding for the mission elapsed timer and service module disposal burn.
  2. Improve focused systems engineering: Boeing will strengthen its review process including better peer and control board reviews, and improve its software process training.
  3. Improve software testing: Boeing will increase the fidelity in the testing of its software during all phases of flight. This includes improved end-to-end testing with the simulations, or emulators, similar enough to the actual flight system to adequately uncover issues.
  4. Ensure product integrity: Boeing will check its software coding as hardware design changes are implemented into its system design.

Boeing already has accepted the full action list as defined by the review team and is in the process of refining its implementation schedule and incorporating this work into its plans with multiple actions already underway. As work continues, NASA and Boeing have asked the joint review team to track their progress and execution of each action.

The review team also is continuing its investigation of the intermittent space-to-ground forward link issue that impeded the flight control team’s ability to command and control the spacecraft. The team has identified the technical root cause as radiofrequency interference with the communications system. While the team has recommended specific hardware improvements already in work by the company, the full assessment and resulting recommendations will continue through March.

In addition to the technical issues described above, the review team identified organizational issues that contributed to the anomalies. In response, Boeing plans to institutionalize improvements in its engineering board authority, operational testing practices for both hardware and software, and the standardization problem review and approval processes.

NASA’s Internal Review and Forward Work

Concurrent with the independent review team, NASA performed an in-depth assessment of its role and identified multiple actions the agency will take to complement the actions planned by the Boeing Starliner team.

NASA has developed a comprehensive plan to ensure the agency has full coverage of critical Boeing software improvements. This plan also includes reassessing all hazard report verifications of software controls, re-opening hazard reports as necessary, reviewing software verification plans, and reviewing the adequacy of the test environments and audits of scripts used in testing. NASA also will co-locate personnel with the Boeing software team, increase support to the Boeing Software Change Control Board and the problem resolution process. NASA also plans to perform additional flight software audits.

In addition, NASA will improve its software independent verification and validation performance and overall NASA insight into this area. NASA also plans to address areas where additional NASA “safety nets” may be beneficial for all providers.

NASA also will take several actions to improve the overall system integration of Starliner, including revisiting all hazard causes related to system interfaces to ensure hazards are fully defined, well-controlled, and properly verified; and reviewing existing Interface Control Documents to ensure NASA understands where the definitive data sources are for subsystem interfaces.

SpaceX Crew Dragon Arrives for Demo-2 Mission

The SpaceX Crew Dragon spacecraft for its first crew launch from American soil has arrived at the launch site. NASA and SpaceX are preparing for the company’s first flight test with astronauts to the International Space Station as part of the agency’s Commercial Crew Program.

The SpaceX Crew Dragon will launch atop a Falcon 9 rocket with NASA astronauts Bob Behnken and Doug Hurley from historic Launch Complex 39A from NASA’s Kennedy Space Center in Florida. The spacecraft now will undergo final testing and prelaunch processing in a SpaceX facility on nearby Cape Canaveral Air Force Station.

Watch a video of the SpaceX Crew Dragon for Demo-2 as it underwent electromagnetic interference testing in the EMI chamber at the SpaceX factory in Hawthorne prior to its arrival at the launch site in Florida.

NASA Shares Initial Findings from Boeing Starliner Orbital Flight Test Investigation

Following the anomaly that occurred during the December Boeing Starliner Orbital Fight Test (OFT), NASA and Boeing formed a joint investigation team tasked with examining the primary issues, which occurred during that test. Those issues included three specific concerns revealed during flight:

  1. An error with the Mission Elapsed Timer (MET), which incorrectly polled time from the Atlas V booster nearly 11 hours prior to launch.
  2. A software issue within the Service Module (SM) Disposal Sequence, which incorrectly translated the SM disposal sequence into the SM Integrated Propulsion Controller (IPC).
  3. An Intermittent Space-to-Ground (S/G) forward link issue, which impeded the Flight Control team’s ability to command and control the vehicle.

The joint investigation team convened in early January and has now identified the direct causes and preliminary corrective actions for the first two anomalies. The intermittent communications issues still are under investigation. NASA reviewed these results on Friday, Jan. 31 along with multiple suggested corrective actions recommended by the team. While NASA was satisfied that the team had properly identified the technical root cause of the two anomalies, they requested the team to perform a more in-depth analysis as to why the anomalies occurred, including an analysis of whether the issues were indicative of weak internal software processes or failure in applying those processes. The team is in the process of performing this additional analysis, as well as continuing the investigation of the intermittent communications issues. NASA briefed the Aerospace Safety Advisory Panel on the status of the investigation this week.

Regarding the first two anomalies, the team found the two critical software defects were not detected ahead of flight despite multiple safeguards. Ground intervention prevented loss of vehicle in both cases. Breakdowns in the design and code phase inserted the original defects. Additionally, breakdowns in the test and verification phase failed to identify the defects preflight despite their detectability. While both errors could have led to risk of spacecraft loss, the actions of the NASA-Boeing team were able to correct the issues and return the Starliner spacecraft safely to Earth.

There was no simple cause of the two software defects making it into flight. Software defects, particularly in complex spacecraft code, are not unexpected. However, there were numerous instances where the Boeing software quality processes either should have or could have uncovered the defects. Due to these breakdowns found in design, code and test of the software, they will require systemic corrective actions. The team has already identified a robust set of 11 top-priority corrective actions. More will be identified after the team completes its additional work.

The joint team made excellent progress for this stage of the investigation. However, it’s still too early for us to definitively share the root causes and full set of corrective actions needed for the Starliner system. We do expect to have those results at the end of February, as was our initial plan. We want to make sure we have a comprehensive understanding of what happened so that we can fully explain the root causes and better assess future work that will be needed. Most critically, we want to assure that these necessary steps are completely understood prior to determining the plan for future flights. Separate from the anomaly investigation, NASA also is still reviewing the data collected during the flight test to help determine that future plan. NASA expects a decision on this review to be complete in the next several weeks.

NASA and Boeing are committed to openly sharing the information related to the mission with the public. Thus, NASA will be holding a media teleconference at 3:30 p.m. EST Friday, Feb. 7.

In addition to these reviews, NASA is planning to perform an Organizational Safety Assessment of Boeing’s work related to the Commercial Crew Program. The comprehensive safety review will include individual employee interviews with a sampling from a cross section of personnel, including senior managers, mid-level management and supervision, and engineers and technicians at multiple sites. The review would be added to the company’s Commercial Crew Transportation Capability contract. NASA previously completed a more limited review of the company. The goal of the Organizational Safety Assessment will be to examine the workplace culture with the commercial crew provider ahead of a mission with astronauts.

Boeing’s Orbital Flight test launched on Friday, Dec. 20, on United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

SpaceX In-Flight Abort: Launch Date Update

NASA and SpaceX now are targeting 8 a.m. EST Sunday, Jan. 19, for launch of the company’s In-Flight Abort Test from Launch Complex 39A in Florida, which will demonstrate Crew Dragon’s ability to safely escape the Falcon 9 rocket in the event of a failure during launch. The abort test has a six-hour launch window.

Teams are standing down from today’s launch attempt due to poor splashdown and recovery weather.

For tomorrow’s launch attempt, meteorologists with the U.S. Air Force 45th Space Wing predict a 60% chance of favorable weather toward the opening of the window with a 40% chance toward the end of the window. The primary concerns for launch day being the thick cloud layer and flight through precipitation rule during the launch window.

The test launch will air on NASA Television and the agency’s website. Here’s the upcoming mission coverage:

Sunday, Jan. 19

  • 7:40 a.m. – NASA TV test coverage begins for the 8 a.m. liftoff
  • 9:30 a.m. – Post-test news conference at Kennedy, with the following representatives:
    • NASA Administrator Jim Bridenstine
    • SpaceX representative
    • Kathy Lueders, manager, NASA Commercial Crew Program
    • Victor Glover, astronaut, NASA Commercial Crew Program
    • Mike Hopkins, astronaut, NASA Commercial Crew Program

Learn more about NASA’s Commercial Crew Program by following the commercial crew blog, @commercial_crew and commercial crew on Facebook.

Early Weather Reports Positive for SpaceX In-Flight Abort Test

With the launch of SpaceX’s in-flight abort demonstration three days away, early weather reports are promising. According to Mike McAleenan, a launch weather officer with the U.S. Air Force 45 th Space Wing, there is a 90 percent chance of favorable weather at liftoff. The primary concern is flight through precipitation, as some shallow coastal rain showers are predicted.

NASA and SpaceX are targeting no earlier than Saturday, Jan. 18, for the In-Flight Abort Test from Launch Complex 39A in Florida. The four-hour test window starts at 8 a.m. EST. The test will demonstrate the escape capabilities of SpaceX’s Crew Dragon spacecraft — showing that the crew system can protect astronauts even in the unlikely event of an emergency during launch.

In-flight abort is the final, major test before astronauts fly aboard the Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. For this test, SpaceX will configure Crew Dragon to intentionally trigger a launch escape prior to 1 minute, 30 seconds into flight to demonstrate Crew Dragon’s capability to safely separate from the Falcon 9 rocket in the unlikely event of an in-flight emergency.

Live coverage will begin on NASA Television and the agency’s website Friday, Jan. 17, with a pretest briefing. Watch live coverage at www.nasa.gov/nasalive.

Boeing CST-100 Starliner Back Home in Florida After Inaugural Flight

The Boeing CST-100 Starliner spacecraft is back home at the company’s Commercial Crew and Cargo Processing Facility, undergoing inspection after its first flight as part of NASA’s Commercial Crew Program, known as the Orbital Flight Test.

Starliner launched atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station (CCAFS) in Florida, Friday, Dec. 20, 2019. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

Photo credit: NASA/Frank Michaux

Successful Static Tests Set Stage for Key In-Flight Abort Demonstration

NASA and SpaceX are preparing to launch the final, major test before astronauts fly aboard the Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. The test, known as in-flight abort, will demonstrate the spacecraft’s escape capabilities — showing that the crew system can protect astronauts even in the unlikely event of an emergency during launch. The uncrewed flight test is targeted for 8 a.m. EST Saturday, Jan. 18, at the start of a four-hour test window, from Launch Complex 39A in Florida.

SpaceX performed a full-duration static test Saturday, Jan. 11, of the Falcon 9 and completed a static fire of the Crew Dragon on Nov. 13, setting the stage for the critical flight test.

Prior to launch, SpaceX and NASA teams will practice launch day end-to-end operations with NASA astronauts, including final spacecraft inspections and side hatch closeout. Additionally, SpaceX and NASA flight controllers along with support teams will be staged as they will for future Crew Dragon missions, helping the integrated launch team gain additional experience beyond existing simulations and training events.

After liftoff, Falcon 9’s ascent will follow a trajectory that will mimic a Crew Dragon mission to the International Space Station matching the physical environments the rocket and spacecraft will encounter during a normal ascent.

Click here for the full story.

NASA Update on Boeing’s Orbital Flight Test

NASA and Boeing are in the process of establishing a joint, independent investigation team to examine the primary issues associated with the company’s uncrewed Orbital Flight Test.

The independent team will inform NASA and Boeing on the root cause of the mission elapsed timer anomaly and any other software issues and provide corrective actions needed before flying crew to the International Space Station for the agency’s Commercial Crew Program. The team will review the primary anomalies experienced during the Dec. 2019 flight test, any potential contributing factors and provide recommendations to ensure a robust design for future missions. Once underway, the investigation is targeted to last about two months before the team delivers its final assessment.

In parallel, NASA is evaluating the data received during the mission to determine if another uncrewed demonstration is required. This decision is not expected for several weeks as teams take the necessary time for this review. NASA’s approach will be to determine if NASA and Boeing received enough data to validate the system’s overall performance, including launch, on-orbit operations, guidance, navigation and control, docking/undocking to the space station, reentry and landing. Although data from the uncrewed test is important for certification, it may not be the only way that Boeing is able to demonstrate its system’s full capabilities.

The uncrewed flight test was proposed by Boeing as a way to meet NASA’s mission and safety requirements for certification and as a way to validate that the system can protect astronauts in space before flying crew. The uncrewed mission, including docking to the space station, became a part of the company’s contract with NASA. Although docking was planned, it may not have to be accomplished prior to the crew demonstration. Boeing would need NASA’s approval to proceed with a flight test with astronauts onboard.

Starliner currently is being transported from the landing location near the U.S. Army’s White Sands Missile Range to the company’s Commercial Crew and Cargo Processing Facility in Florida. Since landing, teams have safed the spacecraft for transport, downloaded data from the spacecraft’s onboard systems for analysis and completed initial inspections of the interior and exterior of Starliner. A more detailed analysis will be conducted after the spacecraft arrives at its processing facility.

Boeing’s Orbital Flight test launched on Friday, Dec. 20, on United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The mission successfully landed two days later on Sunday, Dec. 22, completing an abbreviated test that performed several mission objectives before returning to Earth as the first orbital land touchdown of a human-rated capsule in U.S. history.

SpaceX In-Flight Abort Test Launch Date Update

NASA and SpaceX are targeting no earlier than Saturday, Jan. 18, for an In-Flight Abort Test of the Crew Dragon spacecraft from Launch Complex 39A at the Kennedy Space Center, Florida, pending U.S. Air Force Eastern Range approval. The new date allows additional time for spacecraft processing.

The demonstration of Crew Dragon’s in-flight launch escape system is part of NASA’s Commercial Crew Program and is one of the final major tests for the company before NASA astronauts will fly aboard the spacecraft.

NASA, Boeing Complete Successful Landing of Starliner Flight Test

Boeing’s CST-100 Starliner spacecraft completed the first land touchdown of a human-rated capsule in U.S. history Sunday at White Sands Space Harbor in New Mexico, wrapping up the company’s uncrewed Orbital Flight Test as part of NASA’s Commercial Crew Program.

Starliner settled gently onto its airbags at 7:58 a.m. EST (5:58 a.m. MST) in a pre-dawn landing that helps set the stage for future crewed landings at the same site. The landing followed a deorbit burn at 7:23 a.m., separation of the spacecraft’s service module, and successful deployment of its three main parachutes and six airbags.

Watch NASA TV Live

Commercial Crew Basics

NASA’s Commercial Crew Program has worked with several American aerospace industry companies to facilitate the development of U.S. human spaceflight systems since 2010. The goal is to have safe, reliable and cost-effective access to and from the International Space Station and foster commercial access to other potential low-Earth orbit destinations.

NASA selected Boeing and SpaceX in September 2014 to transport crew to the International Space Station from the United States. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions, maintaining a space station crew of seven to maximize time dedicated to scientific research on the orbiting laboratory.

Leave a Reply

Your email address will not be published. Required fields are marked *